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Background 

• The meaning of the term “interaction” can be cause 
for confusion 

• In statistical terms, an interaction is present when 
the effect of one variable on the outcome depends 
on the levels of another variable. 

• Problem: Whether a statistical interaction is found 
or not depends on how effects are measured, i.e. 
depends upon the scale (additive or multiplicative).  

• This is well known in the epidemiology literature, 
but not well (enough) know among 
biostatisticians 
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Classic psychiatry dataset sparking debate about 
additive vs multiplicative interaction (1978) 

OR = Odds Ratio (95% Confidence Interval) <-compare to 1 
RR = Risk Ratio (95% Confidence Interval) <-compare to 1 
RD = Risk Difference (95% Confidence Interval) <-compare to 0 

Outcome (Depression) 

Prior 
Vulnerability  

Exposure 
Stress No Yes 

Risk of 
Depression 

No No 191 2 0.010 P00 

Yes 79 9 0.102 P01 

Effect of Stress given No Vulnerability -> 

OR = 10.9 (2.3, 51.5) 
RR = 9.9 (2.2, 44.7) 

RD = 0.092 
(0.027,0.157) 

Yes No 60 2 0.032 P10 

Yes 52 24 0.316 P11 

Effect of Stress given Vulnerability -> 

OR = 13.8 (3.1,61.4) 
RR = 9.8 (2.4, 39.8) 

RD=0.284 
(0.170,0.397) 
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Does Vulnerability Modify the Effect 
of Stress on Depression? 

 
• On the multiplicative Odds Ratio scale, is 10.9 sig different from 13.8?  

– Test whether the ratio of the odds ratios  
    (i.e. 13.8/10.9 = 1.27) is significantly different from 1. 
 

• On the multiplicative Risk Ratio scale, is 9.9 sig different from 9.8?  
– Test whether the ratio of the risk ratios  
    (i.e. 9.8/9.9 = 0.99) is significantly different from 1. 
 

• On the additive Risk Difference scale, is 0.092 sig different from 0.284?  
– Test whether the difference in the risk differences  
    (i.e. 0.28-0.09 = 0.19) is significantly different from 0. 

 
 
Rothman calls this difference in the risk differences the “interaction 
contrast (IC)”  
 IC = (P11 - P10) – (P01 - P00) 
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95% confidence intervals for Odds Ratios overlap  

     -> no statistically significant multiplicative interaction OR scale 

95% confidence intervals for Risk Ratios overlap  

     -> no statistically significant multiplicative interaction RR scale 

95% confidence intervals for Risk Differences do not overlap  

     ->  statistically significant additive interaction  

Comparing stress effects across vulnerability groups  
Different conclusions on multiplicative vs additive scale 
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Test for multiplicative interaction on the OR scale- 
Logistic Regression with a cross-product 

IN SAS: 

proc logistic data = brownharris descending; 

model depressn = stressevent   vulnerability   stressevent*vulnerability; 

run; 

 

 Analysis of Maximum Likelihood Estimates 

                                          Standard          Wald 

Parameter               DF    Estimate       Error    Chi-Square    Pr > ChiSq 

Intercept                1     -4.5591      0.7108       41.1409        <.0001 

stressevent              1      2.3869      0.7931        9.0576        0.0026 

vulnerability            1      1.1579      1.0109        1.3120        0.2520 

stresseve* vulnerabi     1      0.2411      1.0984        0.0482        0.8262 

 

     

 

 

 

 

exp(.2411) = 1.27 =  
Ratio of Odds ratios =13.846/10.880 
Not significantly different from 1 

“multiplicative 
interaction” on  
OR scale is not 

significant 
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Test for additive interaction on the 
probability scale- 3 Different Strategies 

The Additive Interaction Contrast (IC) is the Difference of Risk Differences:  

IC = (P11 - P10) – (P01 - P00) = P11-P10-P01+P00.  We want to test this = 0. 

 

1. Directly fit a linear risk model:  

Risk = b0 + b1 * STRESS + b2 * VULN + b3*STRESS*VULN; b3 = IC. 

 

2.  Fit a logistic regression model then back-transform to get 
probabilities (P11, P10, P01, P00) to estimate and test IC. 

 

3. Divide the IC by P00 and get a contrast of risk ratios: 

       IC Ratio = RR(11) – RR(10) – RR(01) + 1  

Estimate Relative Excess Risk due to Interaction (RERI),  

test RERI= 0   
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Strategy #1 Using a linear risk model 

(A)linear binomial model 

(B)linear normal model using robust standard errors 

 

PROS:  
– Contrast of interest is directly estimated and tested 

– Covariates easily included   

– Can be used with continuous predictors in the interaction 

– Can do in most any statistical software 

 

CONS:  
– Linear model for probabilities can be greater than 1 and less than 0 

(outside the parameter space) 

– Convergence problems common for the linear binomial model using 
maximum likelihood estimation 
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IN SAS: 

proc genmod data = individual descending; 

model depressn = stressevent    vulnerability    stressevent*vulnerability/ 

link = identity dist = binomial lrci; 

run; 
 

 Analysis Of Maximum Likelihood Parameter Estimates    Likelihood Ratio 

                                         Standard      95% Confidence       Wald 

  Parameter              DF   Estimate      Error          Limits        Chi-Square  Pr>ChiSq 

  Intercept               1     0.0104     0.0073     0.0017     0.0317      2.02     0.1551 

  stressevent             1     0.0919     0.0331     0.0368     0.1675      7.70     0.0055 

  vulnerability           1     0.0219     0.0236    -0.0139     0.0870      0.86     0.3534 

  stresseve*vulnerabil    1     0.1916     0.0667     0.0588     0.3219      8.26     0.0040 
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Testing for additive interaction on the probability scale 
Strategy #1a: Use linear binomial regression with a cross-product 

Interaction is statistically significant “additive interaction”.  
Reject H0: IC = 0, i.e. Reject parallel lines on probability scale 

link=identity dist=binomial tells SAS to do linear binomial 
regression. lrci  outputs likelihood ratio (profile likelihood) 
confidence intervals.  



****Weighted least squares – controls for the fact that not all observations have the same error 
variance using the Huber white heteroskedastic error estimation; 

proc reg data = individual; 

model depressn = stressevent vulnerability interaction/ white;   
 

The REG Procedure 

Model: MODEL1 

Dependent Variable: depressn 

                                      Parameter Estimates 

                                                                --Heteroscedasticity Consistent- 

                     Parameter     Standard                        Standard 

Variable       DF     Estimate        Error  t Value  Pr > |t|        Error   t Value   Pr > |t| 

 

Intercept       1      0.01036      0.01884     0.55    0.5825      0.00729      1.42     0.1559 

stressevent     1      0.09191      0.03366     2.73    0.0066      0.03311      2.78     0.0058 

vulnerability   1      0.02190      0.03820     0.57    0.5668      0.02359      0.93     0.3539 

interaction     1      0.19162      0.05602     3.42    0.0007      0.06666      2.87     0.0043 
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Testing for additive interaction on the probability scale 
Strategy #1b: Use linear normal (i.e. OLS regression) with robust 

standard errors.  

Interaction is statistically significant “additive interaction”.  
Reject H0: IC = 0, i.e. Reject parallel lines on probability scale 
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Strategy #2 Using logistic regression and  
back-transform to probability scale 

Step 1 - Fit a logistic regression model with a cross product 
included 

Step 2 – Back-transform to get predicted probabilites and 
then form IC contrast and do test of IC = 0. 

 

Two ways of Back-transforming in the presence of covariates:  

1) marginal predicted probabilities – get predicted 
probability at all covariate values and average across 
them 

2) Conditional predicted probabilities – get predicted 
probability at fixed value of covariates (e.g. means or 
mode) 
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Greenland 2004 
argues for 
marginal 



Strategy #2 Using logistic regression and  
back-transform to probability scale 

PROS:  
– Probabilities are kept between 0 and 1. 

– Can be done easily in STATA and SUDAAN (but not SAS)  

CONS:  
–  back-transforming can be tricky for estimator and standard errors 

particularly in presence of covariates 

– Homogeneity of covariate effects on odds ratio scale is not the same 
as homogeneity on risk difference scale and this may imply 
misspecification (Kalilani and Atashili 2006; Skrondal 2003) 

– Not clear how to backtransform if either predictor is continuous. 
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IN STATA 

 

binreg depressn i.stress i.vul i.stress#i.vul, or  

margins i.stress i.vul i.stress#i.vul, contrast(effects) 

 

 

------------------------------------------------------------------------------------------ 

                         |            Delta-method 

                         |   Contrast   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------------------+---------------------------------------------------------------- 

                  stress | 

            (1 vs base)  |   .1550216   .0292602     5.30   0.000     .0976726    .2123706 

                         | 

           vulnerability | 

            (1 vs base)  |   .0968975   .0283118     3.42   0.001     .0414075    .1523876 

                         | 

    stress#vulnerability | 

(1 vs base) (1 vs base)  |   .1916214   .0666555     2.87   0.004      .060979    .3222637 

------------------------------------------------------------------------------------------ 
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Strategy #2 Using logistic regression and  
back-transform to probability scale 

Interaction is statistically significant “additive interaction”.  
Reject H0: IC = 0, i.e. Reject parallel lines on probability scale 



No Interaction 
Perfect Additivity 
 
Risk Increment       A = 5 
Risk Increment       B = 5 
Risk Increment Both = 10  

No interaction 
Perfect Multiplicativity 
 
Risk Increment       A = 5 
Risk Increment       B = 5 
Risk Increment Both = 25 

RELATIONSHIP BETWEEN ADDITIVE AND MULTIPLICATIVE INTERACTION 
THEY CAN GIVE VERY DIFFERENT ANSWERS 

-10 -5 0 5 10 15 20 25 30  

PERFECT 
MULT. 

PERFECT 
ADD. 

SUBADDITIVE  

SUBMULTIPLICATIVE 

SUPERADDITIVE 

SUPERMULT. 



Conclusion 
• The appropriate scale on which to assess interaction effects with 

dichotomous outcomes has been a controversial topic in epidemiology for 
years, but awareness of this controversy is not yet wide spread enough.   

• This would not be a problem if the status quo for examining effect 
modification (i.e. testing interaction effects in logistic regression) was 
actually the “RIGHT” thing to do, but, persuasive arguments have been 
made from the sufficient cause framework that the additive probability 
scale (not the multiplicative odds ratio scale) should be used to assess the 
presence of synergistic effects (Darroch 1997, Rothman and Greenland 
1998, Schwartz 2006, Vanderwheel and Robins 2007,2008) 

• There are now straightforward ways within existing software to estimate 
and test the statistical significance of additive interaction effects.   

• Additional work is needed getting the word out that effect modification 
should not (just) be looked at using Odds Ratios.  
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Thank you for your attention.  

See you in Montréal 
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Data from Brown and Harris (1978) – 2X2X2 Table 

OR = Odds Ratio (95% Confidence Interval) <-compare to 1 
RR = Risk Ratio (95% Confidence Interval) <-compare to 1 
RD = Risk Difference (95% Confidence Interval) <-compare to 0 

Vulnerability  Exposure Outcome (Depression) 

Lack of  
Intimacy Stress Event No Yes 

Risk of 
Depression 

No No 191 2 0.010 P00 

Yes 79 9 0.102 P01 

Effect of Stress given No Vulnerability -> 

OR = 10.9 (2.3, 51.5) 
RR = 9.9 (2.2, 44.7) 

RD = 0.092 
(0.027,0.157) 

Yes No 60 2 0.032 P10 

Yes 52 24 0.316 P11 

Effect of Stress given Vulnerability -> 

OR = 13.8 (3.1,61.4) 
RR = 9.8 (2.4, 39.8) 

RD=0.284 
(0.170,0.397) 
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Does Vulnerability Modify the Effect 
of Stress on Depression? 

 
• On the multiplicative Odds Ratio scale, is 10.9 sig different from 13.8?  

– Test whether the ratio of the odds ratios  
    (i.e. 13.8/10.9 = 1.27) is significantly different from 1. 
 

• On the multiplicative Risk Ratio scale, is 9.9 sig different from 9.8?  
– Test whether the ratio of the risk ratios  
    (i.e. 9.8/9.9 = 0.99) is significantly different from 1. 
 

• On the additive Risk Difference scale, is 0.092 sig different from 0.284?  
– Test whether the difference in the risk differences  
    (i.e. 0.28-0.09 = 0.19) is significantly different from 0. 

 
 
Rothman calls this difference in the risk differences the “interaction 
contrast (IC)”  
 IC = (P11 - P10) – (P01 - P00) 
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95% confidence intervals for Odds Ratios overlap  

     -> no statistically significant multiplicative interaction OR scale 

95% confidence intervals for Risk Ratios overlap  

     -> no statistically significant multiplicative interaction RR scale 

 
95% confidence intervals for Risk Differences do not overlap  

     ->  statistically significant additive interaction  

Comparing stress effects across vulnerability groups  
Different conclusions on multiplicative vs additive scale 
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In general, it is possible to reach 
different conclusions on the two 
different multiplicative scales 
“distributional interaction” 
(Campbell, Gatto, Schwartz 2005) 



Modeling Probabilities  
Binomial modeling with logit, log, or linear link 
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Test for multiplicative interaction on the OR scale- 
Logistic Regression with a cross-product 

IN SAS: 

proc logistic data = brownharris descending; 

model depressn = stressevent   lack_intimacy   stressevent*lack_intimacy; 

oddsratio stressevent / at(lack_intimacy = 0 1); 

oddsratio lack_intimacy / at(stressevent = 0 1); 

run; 

 

 Analysis of Maximum Likelihood Estimates 

                                          Standard          Wald 

Parameter               DF    Estimate       Error    Chi-Square    Pr > ChiSq 

Intercept                1     -4.5591      0.7108       41.1409        <.0001 

stressevent              1      2.3869      0.7931        9.0576        0.0026 

lack_intimacy            1      1.1579      1.0109        1.3120        0.2520 

stresseve*lack_intim     1      0.2411      1.0984        0.0482        0.8262 

 

     

 

 

Wald Confidence Interval for Odds Ratios 

Label                                  Estimate    95% Confidence Limits 

stressevent at lack_intimacy=0           10.880       2.299       51.486 

stressevent at lack_intimacy=1           13.846       3.122       61.408 

lack_intimacy at stressevent=0            3.183       0.439       23.086 

lack_intimacy at stressevent=1            4.051       1.745        9.405 

 

 

exp(.2411) = 1.27 =  
Ratio of Odds ratios =13.846/10.880 
Not significantly different from 1 

“multiplicative 
interaction” on  
OR scale is not 

significant 
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Test for interaction: Are the lines Parallel? 
Log Odds scale Probability scale 

Cross product term in logistic 
regression is magnitude of deviation 
of these lines from being parallel… 
p-value = 0.8262 -> cannot reject that 
lines on logit scale are parallel 
Thus, no statistically significant 
multiplicative interaction on OR scale 

Test for whether lines are 
parallel on probability scale is 
same as H0: IC = 0.   
Need to construct a statistical 
test for IC = P11-P10-P01+P00 

7 

P10 

P00 

P01 

P11 



• Don’t fall into the trap of concluding there must be effect 
modification because one association was statistically significant 
while the other one was not.   

• In other words, just because a significant effect is found in one 
group and not in the other, does NOT mean the effects are 
necessarily different in the two groups (regardless of whether 
we use OR, RR, or RD).   

• Remember, statistical significance is not only a function of the 
effect (OR, RR, or RD) but also the sample size and the baseline 
risk. Both of these can differ across groups.  

• McKee and Vilhjalmsson (1986) point out that Brown and Harris 
(1978) wrongfully applied this logic to conclude there was 
statistical evidence of effect modification (fortunately there 
conclusion was correct despite an incorrect statistical test ) 

The Problem with Comparing Statistical Significance  
of Effects Across Groups 
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Different strategies for statistically testing  
additive interactions on the probability scale  

The IC is the Difference of Risk Differences.  IC = (P11 - P10) – (P01 - P00) = P11-P10-P01+P00 
From Cheung (2007) “Now that many commercially available statistical packages have the capacity to fit log binomial and linear 
binomial regression models, ‘there is no longer any good justification for fitting logistic regression models and estimating odds 
ratios’ when the odds ratio is not of scientific interest”  Inside quote from Spiegelman and Herzmark (2005). 

 

1. Directly fit Risk = b0 + b1 * EXPO + b2 * VULN + b3*EXPO*VULN using (A)  linear binomial or (B)  linear 
normal model (but use robust standard errors).  The b3 = IC and so a test for coefficient b3 is a test for IC.  
Can be implemented directly in PROC GENMOD or PROC REG. PROS: Contrast of interest is directly 
estimated and tested and covariates easily included  CONS: Linear model for probabilities can be greater 
than 1 and less than 0 and thus maximum likelihood estimation can be a problem.  Note there is no  similar 
problem of estimation for the linear normal model. Wald-type confidence intervals can have poor coverage  
for linear binomial (Storer et al 1983), better to use profile likelihood confidence intervals.  

 

2. Fit a logistic regression log(Risk/(1-Risk)) = b0 + b1 * EXPO + b2 * VULN + b3*EXPO*VULN,  then back-
transform parameters to the probability scale to calculate IC.  Can be implemented directly in PROC 
NLMIXED.  PROS: logistic model more computationally stable since smooth decrease/increase to 0 and 1. 
CONS: back-transforming can be tricky for estimator and standard errors particularly in presence of 
covariates. Covariate adjusted probabilities are obtained from average marginal predictions in the fitted 
logistic regression model (Greenland 2004). Homogeneity of covariate effects on odds ratio scale is not the 
same as homogeneity on risk difference scale and this may imply misspecification (Kalilani and Atashili 
2006; Skrondal 2003).  

 

3. Instead of IC, use IC ratio.  Divide the IC by P00 and get a contrast of risk ratios: 

        IC Ratio = P11/P00 -P10/P00 -P01/P00+P00/P00  = RR(11) – RR(10) – RR(01) + 1 called the  

        Relative Excess Risk due to Interaction (RERI).                    Many papers on inference for RERI  9 



Risk = b0 + b1 * STRESS + b2 * LACKINT + b3*STRESS*LACKINT              NOTE: b3 = IC 
 

 

 

IN SAS: 

proc genmod data = individual descending; 
model depressn = stressevent    lack_intimacy    stressevent*lack_intimacy/ 
link = identity dist = binomial lrci; 
estimate 'RD of stressevent when intimacy = 0' stressevent 1; 
estimate 'RD of stressevent when intimacy = 1' stressevent 1 stressevent*lack_intimacy 1; 

run; 
 

 

 Analysis Of Maximum Likelihood Parameter Estimates    Likelihood Ratio 

                                         Standard      95% Confidence       Wald 

  Parameter              DF   Estimate      Error          Limits        Chi-Square  Pr>ChiSq 

  Intercept               1     0.0104     0.0073     0.0017     0.0317      2.02     0.1551 

  stressevent             1     0.0919     0.0331     0.0368     0.1675      7.70     0.0055 

  lack_intimacy           1     0.0219     0.0236    -0.0139     0.0870      0.86     0.3534 

  stresseve*lack_intim    1     0.1916     0.0667     0.0588     0.3219      8.26     0.0040 

 

 Contrast Estimate Results 

                                          Mean         Mean          Standard 

 Label                                Estimate   Confidence Limits     Error 

 RD of stressevent when intimacy = 0    0.0919    0.0270    0.1568    0.0331 

 RD of stressevent when intimacy = 1    0.2835    0.1701    0.3969    0.0578 
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Testing for additive interaction on the probability scale 
Strategy #1a: Use linear binomial regression with a cross-product 

Interaction is statistically significant “additive interaction”.  
Reject H0: IC = 0, i.e. Reject parallel lines on probability scale 

link=identity dist=binomial tells SAS to do linear binomial 
regression. lrci  outputs likelihood ratio (profile likelihood) 
confidence intervals.  



****Weighted least squares – controls for the fact that not all observations have the same error variance; 

proc reg data = individual; 

model depressn = stressevent lack_intimacy interaction/ white;  ***white does the huber white heteroskedastic error estimation; 

run; 

 

The REG Procedure 

Model: MODEL1 

Dependent Variable: depressn 

                                      Parameter Estimates 

                                                                --Heteroscedasticity Consistent- 

                     Parameter     Standard                        Standard 

Variable       DF     Estimate        Error  t Value  Pr > |t|        Error   t Value   Pr > |t| 

 

Intercept       1      0.01036      0.01884     0.55    0.5825      0.00729      1.42     0.1559 

stressevent     1      0.09191      0.03366     2.73    0.0066      0.03311      2.78     0.0058 

lack_intimacy   1      0.02190      0.03820     0.57    0.5668      0.02359      0.93     0.3539 

interaction     1      0.19162      0.05602     3.42    0.0007      0.06666      2.87     0.0043 
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Testing for additive interaction on the probability scale 
Strategy #1b: Use linear normal (i.e. OLS regression) with robust 

standard errors.  



Test for additive interaction on the probability scale 
Strategy #2: Use logistic regression and back-transform estimates 

to form contrasts on the probability scale 
PROC NLMIXED DATA=individual; 
***logistic regression model is; 
odds = exp(b0 +b1*stressevent + b2*lack_intimacy + b3*stressevent*lack_intimacy); 
pi = odds/(1+odds); 
MODEL depressn~BINARY(pi); 
 
estimate 'p00' exp(b0)/(1+exp(b0)); 
estimate 'p01' exp(b0+b1)/(1+exp(b0+b1)); 
estimate 'p10' exp(b0+b2)/(1+exp(b0+b2)); 
estimate 'p11' exp(b0+b1+b2+b3)/(1+exp(b0+b1+b2+b3)); 
 
estimate 'p11-p10' exp(b0+b1+b2+b3)/(1+exp(b0+b1+ b2+b3))-  exp(b0+b2)/(1+exp(b0+b2)); 
estimate 'p01-p00' exp(b0+b1)/(1+exp(b0+b1)) - exp(b0)/(1+exp(b0)); 
 
estimate 'IC= interaction contrast = p11-p10 - p01 + p00'        
exp(b0+b1+b2+b3)/(1+exp(b0+b1+ b2+b3)) -  exp(b0+b2)/(1+exp(b0+b2)) - exp(b0+b1)/(1+exp(b0+b1)) + 
exp(b0)/(1+exp(b0)); 
 
estimate 'ICR= RERI using RR = p11/p00 - p10/p00 - p01/p00 + 1' 
             exp(b0+b1+b2+b3)/(1+exp(b0+b1+ b2+b3))/ (exp(b0)/(1+exp(b0))) 
          -  exp(b0+b2)/(1+exp(b0+b2))/  (exp(b0)/(1+exp(b0))) 
          -  exp(b0+b1)/(1+exp(b0+b1)) /  (exp(b0)/(1+exp(b0)))  + 1; 
estimate 'ICR= RERI using OR'  exp(b1+b2+b3) - exp(b1) - exp(b2) +1; 
RUN; 
 12 

These are Strategy #3 



Strategy #2 Output from NLMIXED  

                                             Parameter Estimates 

                    Standard 

Parameter Estimate    Error      DF    t Value    Pr > |t|     Alpha       Lower       Upper    Gradient 

 

b0       -4.5591      0.7108     419      -6.41      <.0001      0.05     -5.9563     -3.1620    -0.00002 

b1        2.3869      0.7931     419       3.01      0.0028      0.05      0.8280      3.9458    -0.00003 

b2        1.1579      1.0109     419       1.15      0.2527      0.05     -0.8291      3.1450    2.705E-6 

b3        0.2411      1.0984     419       0.22      0.8264      0.05     -1.9180      2.4002    -0.00001 

                                              Additional Estimates 

                               Standard 

Label               Estimate     Error     DF    t Value    Pr > |t|     Lower    Upper 

p00                  0.01036    0.00728    419       1.42      0.1559  -0.00397   0.0246 

p10                  0.1023     0.03230    419       3.17      0.0017   0.03878   0.1658 

p01                  0.03226    0.02244    419       1.44      0.1513  -0.01185   0.0763 

p11                  0.3158     0.05332    419       5.92      <.0001   0.2110    0.4206 

p11-p10              0.2135     0.06234    419       3.43      0.0007   0.09098   0.3361 

p01-p00              0.02190    0.02359    419       0.93      0.3539  -0.02448   0.0682 

IC =p11-p10-p01+p00  0.1916     0.06666    419       2.87      0.0042   0.06060   0.3226 

 

RERI using RR        18.4915    13.8661    419       1.33      0.1831  -8.7644    45.7473 

RERI using OR        31.0138    24.3583    419       1.27      0.2036  -16.8659   78.8936 
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• The IC estimator is same as before (slide 9) but slightly different s.e., p-value and 95% confidence interval 
– still conclude there is a significant additive interaction. 
 

• Results for RERI (using RR and OR) indicate that there is NOT a significant additive interaction.  This 
conflicts with the conclusion that the IC is highly significant.  The cause of the discrepancy is related to 
estimation of standard errors and confidence intervals. Literature indicates Wald-type confidence intervals 
perform poorly for RERI (Hosmer and Lemeshow 1992; Assman  et al 1996).  
 

• Proc NLMIXED uses Delta method to obtain standard errors of back-transformed parameters and Wald-
type confidence intervals, i.e. (estimate) +- 1.96*(standard error) .  Possible to obtain profile likelihood 
confidence intervals using a separate macro (Richardson and Kaufman 2009) or PROC NLP (nonlinear 
programming) (Kuss et al 2010). Also possible to bootstrap (Assman et al 1996 and Nie et al 2010) or 
incorporate prior information (Chu et al 2011) 
 
 
 

 
 

IC estimator same as 
strategy #1, but 
slightly different s.e., 
p-value, 95% conf 
interval 



proc rlogist data = a design = srs; ***srs tells SUDAAN to treat as iid data;     

class gene expo ; 

reflevel gene=0 expo=0; 

model outcome= gene expo gene*expo; 

 

************; 

predMARG gene*expo; 

pred_eff gene=(1 0)*expo=(-1 1)/name ="pred: exposure effect when gene not present"; 

pred_eff gene=(0 1)*expo=(-1 1)/name ="pred: exposure effect when gene is present"; 

pred_eff gene=(-1 1)*expo=(-1 1)/name ="pred_int: difference in risk differences"; 

 

**************; 

condMARG gene*expo; 

cond_eff gene=(1 0)*expo=(-1 1)/name ="cond: exposure effect when gene not present"; 

cond_eff gene=(0 1)*expo=(-1 1)/name ="cond: exposure effect when gene is present"; 

cond_eff gene=(-1 1)*expo=(-1 1)/name ="cond_int: difference in risk differences"; 

 

run; 
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Test for additive interaction on the probability scale 
Strategy #2: Use logistic regression and back-transform –  

An easier way in SUDAAN 

These are 
the same if 
there are no 
covariates 



S U D A A N 

            Software for the Statistical Analysis of Correlated Data 

           Copyright      Research Triangle Institute     August 2008 

                                 Release 10.0 

DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a 

Simple Random Sample (SRS) Design 

 

Number of zero responses     :   382 

Number of non-zero responses :    37 

 

Response variable OUTCOME: OUTCOME 

by: Predicted Marginal #1. 

  

--------------------------------------------------------------------------------  

  PredMarginal     Predicted 

  #1               Marginal               SE         T:Marg=0          P-value 

-------------------------------------------------------------------------------- 

GENE, EXPO 

  0, 0           0.0103626943     0.0072981803     1.4199011081     0.1563818430 

  0, 1           0.1022727273     0.0323392291     3.1624973812     0.0016782922 

  1, 0           0.0322580645     0.0224658037     1.4358740502     0.1517860946 

  1, 1           0.3157894737     0.0533833440     5.9155056648     0.0000000069 

-------------------------------------------------------------------------------- 

-------------------------------------------------------------------------------- 

Contrasted 

 Pred Marg#1     PREDMARG 

  #1           Contrast                     SE           T-Stat          P-value 

-------------------------------------------------------------------------------- 

pred: 

  exposure 

  effect 

  when gene 

  not 

  present        0.0919100330     0.0331525138     2.7723397823     0.0058143088 

-------------------------------------------------------------------------------- 
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NOTE: I renamed  
Gene = lack_intimacy 
Expo = stress_event  
But data is same as 
Brown Harris 



More SUDAAN output for the 
BrownHarris example 

 

-------------------------------------------------------------------------------- 

Contrasted 

  Predicted 

  Marginal     PREDMARG 

  #2           Contrast                     SE           T-Stat          P-value 

-------------------------------------------------------------------------------- 

pred: 

  exposure 

  effect 

  when gene 

  is present     0.2835314092     0.0579179916     4.8953943573     0.0000014039 

-------------------------------------------------------------------------------- 

  

-------------------------------------------------------------------------------- 

Contrasted 

  Predicted 

  Marginal     PREDMARG 

  #3           Contrast                     SE           T-Stat          P-value 

-------------------------------------------------------------------------------- 

pred_int: 

  difference 

  in risk 

  differenc- 

  es             0.1916213762     0.0667351701     2.8713701643     0.0042948171 

----------------------------------------------------------------------- 
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Controlling for Covariates within the 
back-transformation strategy 

• When we fit a model on the logit scale and include a 
covariate (e.g. age as a main effect)  
logit p = b0 + b1 * EXPO + b2 * VULN + b3*EXPO*VULN + b4*Gender 

this is controlling for gender on the logit scale so that the 
effects we find for expo, vuln, and expo*vuln on the logit 
scale (odds ratios) are expected to be the same both 
genders. 

• BUT, back on the probability scale (after back-
transformation), the effect of expo, vuln, or expo*vuln will 
differ depending on which gender someone is 

• That is, there was “homogeneity” of effects (across gender) 
on the logit scale, but there will not be “homogeneity” of 
effects on the probability scale. 

• Not sure this if this is a problem per se but it is something 
necessary to consider for interpretation. 
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Two ways to back transform – SUDAAN calls 
them “conditional and predicted” marginal 

18 

Bieler (2010) 
Standardized 
population 
averaged risk 
Greenland (2004) 

From 
p.513 
SUDAAN 
manual 

Back-
transform 
an “average 
person”  



Two ways of back-transforming… 

• The conditional marginal approach estimates the effects on the probability 
scale for a certain fixed covariate value, usually the mean, but usually an 
“average person” doesn’t exist, e.g. if the covariate is gender and if 30% of 
sample is male, this means we are finding the predicted probability 
associated with someone who is 30% male.  Further, if we used some 
other fixed values for the covariates, we would get different effects (on 
the probability scale) for the gene*environment 

• The predicted marginal approach allows different covariate values to give 
different predicted probabilities and thus gets a distribution of risks and 
then averages over them on the probability scale.  SUDAAN uses the 
observed distribution of the covariates in the sample as the 
“standardization population”, but I believe Sharon Schwartz would argue 
that perhaps it is better to use the distribution of the covariates in the 
“unexposed” population to standardize to.  I think she had a student work 
on this for topic and they are working on a paper now. 

• From my reading of the EPI literature, the predicted marginal approach is 
preferred since it has a more meaningful interpretation. 
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Conclusion 
• The appropriate scale on which to assess interaction effects with 

dichotomous outcomes has been a controversial topic in epidemiology for 
years, but awareness of this controversy is not yet wide spread enough.   

• This would not be a problem if the status quo for examining effect 
modification (i.e. testing interaction effects in logistic regression) was 
actually the “RIGHT” thing to do, but, persuasive arguments have been 
made from the sufficient cause framework that the additive probability 
scale (not the multiplicative odds ratio scale) should be used to assess the 
presence of synergistic effects (Darroch 1997, Rothman and Greenland 
1998, Schwartz 2006, Vanderwheel and Robins 2007,2008) 

• There are now straightforward ways within existing software to estimate 
and test the statistical significance of additive interaction effects.   

• Additional work is needed getting the word out that effect modification 
should not (just) be looked at using Odds Ratios.  

20 



1 
 

An illustrative Data example – Additive interaction with a covariate 
 

 
 
 
 
 
 
 
 
 

 
 
If there was perfect balance of the covariate in each of the 4 risk groups (i.e. Gene by exposure groups), then 
we wouldn’t have to worry about it being a confounder, but since it varies from 24% up to 37% and tends to 
be higher in the exposure group as compared to the not exposed group, it should be controlled. 
 
 

 
 

Variable            N          Mean       Std Dev           Sum       Minimum       Maximum 

 

outcome           800       0.22250       0.41619     178.00000             0       1.00000 

gene              800       0.48375       0.50005     387.00000             0       1.00000 

expo              800       0.48500       0.50009     388.00000             0       1.00000 

covariate         800       0.31625       0.46530     253.00000             0       1.00000 

 

            Pearson Correlation Coefficients, N = 800 

                outcome          gene          expo      covariate 

outcome         1.00000       0.19781       0.20247        0.25663 

                               <.0001        <.0001         <.0001 

gene            0.19781       1.00000       0.14166        0.05708 

                 <.0001                      <.0001         0.1067 

expo            0.20247       0.14166       1.00000        0.09840 

                 <.0001        <.0001                       0.0053 

covariate       0.25663       0.05708       0.09840        1.00000 

                 <.0001        0.1067        0.0053 
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0 1 172 19% 36% 
1 0 171 19% 32% 
1 1 216 40% 37% 
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Logistic regression estimates: 

 

Analysis Of Maximum Likelihood Parameter Estimates 

 

                               Standard    Likelihood Ratio 95%          Wald 

Parameter    DF    Estimate       Error      Confidence Limits     Chi-Square    Pr > ChiSq 

 

Intercept     1     -2.5218      0.2264     -2.9885     -2.0983        124.09        <.0001 

gene          1      0.5668      0.2926     -0.0050      1.1462          3.75        0.0527 

expo          1      0.5383      0.2913     -0.0309      1.1155          3.41        0.0647 

gene*expo     1      0.5514      0.3839     -0.2001      1.3075          2.06        0.1509 

covariate     1      1.2192      0.1846      0.8589      1.5835         43.60        <.0001 

Scale         0      1.0000      0.0000      1.0000      1.0000 

 

Logit P = -2.52 + 0.5668*GENE + 0.5383*EXPO + 0.5514*G*E + 1.219*Covariate 
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The conditional marginal approach then calculates the predicted 

probabilities for the G*E back on the original scale as 
 

> gene=c(0,0,1,1) 

> expo=c(0,1,0,1) 

> covariate = .31625   

> LogitP = -2.52 + 0.5668*gene + 0.5383*expo + 0.5514*gene*expo + 1.219*covariate 

> LogitP 

[1] -2.1344912 -1.5961912 -1.5676912 -0.4779913 

 

> exp(LogitP)/(1+exp(LogitP)) 

[1] 0.1057894 0.1685146 0.1725458 0.3827266 

 

FROM SUDAAN 

 

------------------------------------------------------------------------- 

Conditional 

  Marginal     Conditional 

  #1           Marginal                     SE         T:Marg=0          P-value 

-------------------------------------------------------------------------------- 

GENE, EXPO 

  0, 0           0.1056206853     0.0203578588     5.1882020754     0.0000002694 

  0, 1           0.1682595536     0.0280578276     5.9968845713     0.0000000030 

  1, 0           0.1722933591     0.0292915541     5.8820149491     0.0000000060 

  1, 1           0.3823099821     0.0342856575    11.1507262872     0.0000000000 

 

IC = (.38 - .17) – (.168 - .105) 

-------------------------------------------------------------------------------- 

Contrasted 

  Condition- 

  al 

  Marginal     CONDMARG 

  #3           Contrast                     SE           T-Stat          P-value 

-------------------------------------------------------------------------------- 

cond_int: 

  difference 

  in risk 

  differenc- 

  es             0.1473777547     0.0563674058     2.6145917595     0.0091017247 

----------------------------------------------------------------------------- 
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And for the predicted marginal approach we take  

> gene=c(0,0,1,1,0,0,1,1) 

> expo=c(0,1,0,1,0,1,0,1) 

> covariate = c(0,0,0,0,1,1,1,1) 

> #covariate = .31625 

> LogitP = -2.52 + 0.5668*gene + 0.5383*expo + 0.5514*gene*expo + 1.219*covariate 

> LogitP 

[1] -2.5200 -1.9817 -1.9532 -0.8635 -1.3010 -0.7627 -0.7342  0.3555 

> prob=exp(LogitP)/(1+exp(LogitP)) 

> prob 

[1] 0.07446795 0.12113773 0.12420485 0.29660861 0.21399677 0.31806035 0.32427374 

[8] 0.58795068 

> predmarg = (1-.31625)*prob[1:4] + .31625*prob[5:8] 

> predmarg 

[1] 0.1185939 0.1834145 0.1874766 0.3887455 

 

--------------------------------------------------------------------------- 

Predicted 

  Marginal     Predicted 

  #1           Marginal                     SE         T:Marg=0          P-value 

-------------------------------------------------------------------------------- 

GENE, EXPO 

  0, 0           0.1184185808     0.0214723290     5.5149388193     0.0000000471 

  0, 1           0.1831610712     0.0281468459     6.5073391217     0.0000000001 

  1, 0           0.1872265641     0.0292713633     6.3962365483     0.0000000003 

  1, 1           0.3883600906     0.0320980597    12.0991765126     0.0000000000 

 

IC = .388 - .187 – (.183 - .118) = .136 

 

-------------------------------------------------------------------------------- 

Contrasted 

  Predicted 

  Marginal     PREDMARG 

  #3           Contrast                     SE           T-Stat          P-value 

-------------------------------------------------------------------------------- 

pred_int: 

  difference 

  in risk 

  differenc- 

  es             0.1363910361     0.0555247836     2.4563992369     0.0142454402 

-------------------------------------------------------------------------------- 

 


